We propose a fairness-aware learning framework that mitigates intersectional subgroup bias associated with protected attributes. Prior research has primarily focused on mitigating one kind of bias by incorporating complex fairness-driven constraints into optimization objectives or designing additional layers that focus on specific protected attributes. We introduce a simple and generic bias mitigation approach that prevents models from learning relationships between protected attributes and output variable by reducing mutual information between them. We demonstrate that our approach is effective in reducing bias with little or no drop in accuracy. We also show that the models trained with our learning framework become causally fair and insensitive to the values of protected attributes. Finally, we validate our approach by studying feature interactions between protected and non-protected attributes. We demonstrate that these interactions are significantly reduced when applying our bias mitigation.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Importance: Social determinants of health (SDOH) are known to be associated with increased risk of suicidal behaviors, but few studies utilized SDOH from unstructured electronic health record (EHR) notes. Objective: To investigate associations between suicide and recent SDOH, identified using structured and unstructured data. Design: Nested case-control study. Setting: EHR data from the US Veterans Health Administration (VHA). Participants: 6,122,785 Veterans who received care in the US VHA between October 1, 2010, and September 30, 2015. Exposures: Occurrence of SDOH over a maximum span of two years compared with no occurrence of SDOH. Main Outcomes and Measures: Cases of suicide deaths were matched with 4 controls on birth year, cohort entry date, sex, and duration of follow-up. We developed an NLP system to extract SDOH from unstructured notes. Structured data, NLP on unstructured data, and combining them yielded seven, eight and nine SDOH respectively. Adjusted odds ratios (aORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Results: In our cohort, 8,821 Veterans committed suicide during 23,725,382 person-years of follow-up (incidence rate 37.18 /100,000 person-years). Our cohort was mostly male (92.23%) and white (76.99%). Across the six common SDOH as covariates, NLP-extracted SDOH, on average, covered 84.38% of all SDOH occurrences. All SDOH, measured by structured data and NLP, were significantly associated with increased risk of suicide. The SDOH with the largest effects was legal problems (aOR=2.67, 95% CI=2.46-2.89), followed by violence (aOR=2.26, 95% CI=2.11-2.43). NLP-extracted and structured SDOH were also associated with suicide. Conclusions and Relevance: NLP-extracted SDOH were always significantly associated with increased risk of suicide among Veterans, suggesting the potential of NLP in public health studies.
translated by 谷歌翻译
Using massive datasets to train large-scale models has emerged as a dominant approach for broad generalization in natural language and vision applications. In reinforcement learning, however, a key challenge is that available data of sequential decision making is often not annotated with actions - for example, videos of game-play are much more available than sequences of frames paired with their logged game controls. We propose to circumvent this challenge by combining large but sparsely-annotated datasets from a \emph{target} environment of interest with fully-annotated datasets from various other \emph{source} environments. Our method, Action Limited PreTraining (ALPT), leverages the generalization capabilities of inverse dynamics modelling (IDM) to label missing action data in the target environment. We show that utilizing even one additional environment dataset of labelled data during IDM pretraining gives rise to substantial improvements in generating action labels for unannotated sequences. We evaluate our method on benchmark game-playing environments and show that we can significantly improve game performance and generalization capability compared to other approaches, using annotated datasets equivalent to only $12$ minutes of gameplay. Highlighting the power of IDM, we show that these benefits remain even when target and source environments share no common actions.
translated by 谷歌翻译
This paper is a technical overview of DeepMind and Google's recent work on reinforcement learning for controlling commercial cooling systems. Building on expertise that began with cooling Google's data centers more efficiently, we recently conducted live experiments on two real-world facilities in partnership with Trane Technologies, a building management system provider. These live experiments had a variety of challenges in areas such as evaluation, learning from offline data, and constraint satisfaction. Our paper describes these challenges in the hope that awareness of them will benefit future applied RL work. We also describe the way we adapted our RL system to deal with these challenges, resulting in energy savings of approximately 9% and 13% respectively at the two live experiment sites.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
自2016年成立以来,Alexa奖计划使数百名大学生能够通过Socialbot Grand Challenge探索和竞争以发展对话代理商。挑战的目的是建立能够与人类在流行主题上连贯而诱人的代理人20分钟,同时达到至少4.0/5.0的平均评分。但是,由于对话代理商试图帮助用户完成日益复杂的任务,因此需要新的对话AI技术和评估平台。成立于2021年的Alexa奖Taskbot Challenge建立在Socialbot Challenge的成功基础上,通过引入交互式协助人类进行现实世界烹饪和做自己动手做的任务的要求,同时同时使用语音和视觉方式。这项挑战要求TaskBots识别和理解用户的需求,识别和集成任务和域知识,并开发新的方式,不分散用户的注意力,而不必分散他们的任务,以及其他挑战。本文概述了Taskbot挑战赛,描述了使用Cobot Toolkit提供给团队提供的基础架构支持,并总结了参与团队以克服研究挑战所采取的方法。最后,它分析了比赛第一年的竞争任务机器人的性能。
translated by 谷歌翻译
神经网络修剪可以有效地用于压缩自动语音识别(ASR)模型。但是,在多语言ASR中,执行语言不足的修剪可能会导致某些语言的严重性能降解,因为语言 - 敏捷的修剪口罩可能不符合所有语言,并丢弃了重要的语言特定参数。在这项工作中,我们提出了ASR路径,这是一种稀疏的多语言ASR模型,该模型激活了特定语言的子网络(“路径”),从而明确地学习了每种语言的参数。通过重叠的子网络,共享参数还可以通过联合多语言培训来实现较低资源语言的知识传输。我们提出了一种新型算法来学习ASR途径,并通过流式RNN-T模型评估了4种语言的建议方法。我们提出的ASR途径的表现都优于密集模型(平均-5.0%)和语言不足的修剪模型(平均-21.4%),并且与单语稀疏模型相比,低资源语言的性能更好。
translated by 谷歌翻译
集中式培训(CT)是许多受欢迎的多代理增强学习(MARL)方法的基础,因为它允许代理商快速学习高性能的政策。但是,CT依靠代理人从对特定州对其他代理商的行为的一次性观察中学习。由于MARL代理商在培训期间探索和更新其政策,因此这些观察结果通常会为其他代理商的行为和预期的给定行动回报提供不良的预测。因此,CT方法患有较高的差异和容易出错的估计,从而损害了学习。除非施加了强大的分解限制,否则CT方法还遭受了复杂性爆炸性增长(例如,QMIX的单调奖励函数)。我们通过一个新的半居中的MAL框架来应对这些挑战,该框架执行政策安装的培训和分散的执行。我们的方法是嵌入式增强学习算法(PERLA),是参与者批评的MARL算法的增强工具,它利用了一种新型参数共享协议和策略嵌入方法来维持对其他代理商的行为的估计。我们的理论证明,佩拉大大降低了价值估计的差异。与各种CT方法不同,Perla无缝地采用MARL算法,它可以轻松地与代理数量缩放,而无需限制性分解假设。我们展示了Perla在基准环境中的出色经验表现和有效的缩放,包括Starcraft Micromagement II和Multi-Agent Mujoco
translated by 谷歌翻译